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Abstract

Using Weitzenböck techniques on any compact Riemannian spin manifold we derive inequalities
that involve a real parameter and join the eigenvalues of the Dirac operator with curvature terms.
The discussion of these inequalities yields vanishing theorems for the kernel of the Dirac operator
D and lower bounds for the spectrum ofD2 if the curvature satisfies certain conditions.
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1. Introduction

In 1980, Friedrich[1] proved that, on any compact Riemannian spinn-manifoldM of
scalar curvatureS with S0 := min{S(x)|x ∈ M} > 0, every eigenvalueλ of the Dirac
operatorD satisfies the inequality

λ2 ≥ n

4(n− 1)
S0. (1)

In special geometric situations, better estimates are known (see[4,6]). For example, ifM
is a spin Kähler manifold of complex dimensionm and scalar curvatureS > 0, we have the
inequalities

λ2 ≥



m+ 1

4m
S0 (modd),

m

4(m− 1)
S0 (meven).

(2)

E-mail address:kirchber@mathematik.hu-berlin.de (K.-D. Kirchberg).

0393-0440/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2003.11.002



206 K.-D. Kirchberg / Journal of Geometry and Physics 50 (2004) 205–222

The estimates (1), (2) are sharp in the sense that there are manifolds for which the given
lower bound itself is an eigenvalue ofD2. But this kind of estimate by the scalar curvature
only is not useful ifS has zeros or attains negative values. Hence, the question arises if there
exist lower bounds for the spectrum ofD2 that depend on additional curvature terms. For
certain manifolds whose curvature tensor or Weyl tensor, respectively, is divergence-free
(co-closed and, hence, harmonic) such lower bounds have been obtained recently (see[2,3]).
In the case of a compact Riemannian spinn-manifoldM with divergence-free curvature
tensorR(�R = 0), scalar curvatureS = 0, and nowhere vanishing Ricci tensor, for example,
the estimate

λ2 >
1

4

|Ric|20
|κ0| + |Ric|0

√
(n− 1)/n

(3)

is valid, where|Ric|0 > 0 denotes the minimum of the length of the Ricci tensor andκ0
the smallest eigenvalue of Ric onM [2, Theorem 2.2]. Moreover, it has been proved that
ker(D) is trivial, i.e., there are no harmonic spinors ifM is compact with divergence-free
curvature tensor and scalar curvatureS ≤ 0 such that the inequality

|Ric|20 > S · κ0 (4)

holds[2, Theorem 2.2]. We recall thatS is constant here, since the supposition�R = 0 is
equivalent to the symmetry property

(∇XRic)Y = (∇YRic)X (5)

of the covariant derivative∇Ric of the Ricci tensor, which immediately implies dS = 0. A
more general supposition than(5) is

(∇XRic)Y − (∇YRic)X = 1

2(n− 1)
(X(S)Y − Y(S)X). (6)

For dimensionn ≥ 4,(6) is equivalent to the condition that the Weyl tensorW is divergence-
free (�W = 0) and, hence, harmonic(dW = 0, �W = 0). In the compact conformally
nonflat case with�W = 0, the estimate

λ2 ≥ 1

8(n− 1)


(2n− 1)S0 +

√
S2

0 + n− 1

n

(
4ν0

µ

)2

 (7)

was proved for any eigenvalueλ of the Dirac operator, whereν0 ≥ 0 andµ > 0 are
conformal invariants depending onW only. ForS0 > 0, (7) yields a better estimate than(1)
if ν0 > 0. ForS0 ≤ 0, the lower bound in(7) is positive if 2ν0 > nµ|S0| [3, Theorem 3.1].
In this paper we prove estimates similar to (3) and(7) which, however, do not make use of
the suppositions(5) or (6), respectively. Moreover, we obtain vanishing theorems for the
space ker(D) of harmonic spinors which are generalizations of those in[2,3]. Our results
are based on Weitzenböck formulas for modified twistor operators, which can partially be
found in[2,3,5]already. However, what is new in this paper is the combination of the various
Weitzenböck formulas for the modified twistor operators.
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2. Curvature endomorphisms of the spinor bundle

LetM be any Riemannian spinn-manifold with Riemannian metricg and spinor bundle
Σ. As usual, we denote by∇ the covariant derivative induced byg on vector fields as well
as on spinor fields (Levi-Civita connection). For any vector fieldsX, Y,Z and any spinor
fieldψ, the Riemannian curvature tensorR and the corresponding curvature tensorC of the
spinor bundle are defined by

R(X, Y)Z := ∇2
X,YZ − ∇2

Y,XZ, C(X, Y)ψ := ∇2
X,Yψ − ∇2

Y,Xψ,

where we use the notation

∇2
X,Y := ∇X ◦ ∇Y − ∇∇XY

for the tensorial derivatives of second order. Given a local frame of vector fields
(X1, . . . , Xn), we denote by(X1, . . . , Xn) the associated coframe defined byXk := gklXl,
where(gkl) is the inverse of the matrix(gkl) with gkl := g(Xk,Xl). Thus, for any orthonor-
mal frame, we haveXk = Xk (k = 1, . . . , n). Then the Ricci tensor Ric, the scalar curvature
S, and the Dirac operatorD are locally given by Ric(X) = R(X,Xk)X

k, S = tr(Ric) =
g(Ric(Xk),X

k) andDψ = Xk · ∇Xkψ, respectively.
For the reader’s convenience, we summarize some well-known, important identities:

C(X, Y) = 1
4Xk · R(X, Y)Xk, (8)

Xk · C(Xk,X) = 1
2Ric(X) = C(Xk,X) ·Xk, (9)

Xk · Ric(Xk) = −S = Ric(Xk) ·Xk, (10)

Xk · ∇2
Xk,X

ψ = ∇XDψ + 1
2Ric(X) · ψ, (11)

Xk · ∇2
X,Xk

ψ = ∇XDψ. (12)

The curvature endomorphismC(X, Y) is anti-selfadjoint with respect to the Hermitian scalar
product〈·, ·〉 onΣ, i.e., we have

C(X, Y)∗ = −C(X, Y). (13)

Thus, the endomorphismC2(X, Y) := C(Y,Xk) ◦ C(Xk,X) has the property

C2(X, Y)∗ = C2(Y,X) (14)

and, hence, the endomorphismG := C2(Xk,X
k) of Σ is selfadjoint and nonnegative

G∗ = G, G ≥ 0. (15)

LetW denote the Weyl tensor ofM and consider the curvature endomorphismsB(X, Y) :=
(1/4)Xk ·W(X, Y)Xk,B2(X, Y) := B(Y,Xk)◦B(Xk,X),H := B2(Xk,X

k). Then we have
analogously:

B(X, Y)∗ = −B(X, Y), B2(X, Y)∗ = B2(Y,X), (16)
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Xk · B(Xk,X) = 0 = B(Xk,X) ·Xk, (17)

H∗ = H, H ≥ 0. (18)

The following lemma is proved by straightforward calculations.

Lemma 2.1. The endomorphismsG andH are related by

G = H + 1

8
(|R|2 − |W |2) = H + 1

2(n− 2)

∣∣∣∣Ric − S

n

∣∣∣∣
2

+ S2

4n(n− 1)
. (19)

Moreover, if H = H0 +H2 +H4 is the decomposition ofH in the Clifford algebra into the
componentsH0, H2, H4 of degree0, 2and4, respectively, then

H0 = 1
8|W |2, H2 = 0. (20)

Using the notations�R(X) := (∇XkR)(X,X
k), �C(X) := (∇XkC)(X,X

k)and�W(X) :=
(∇XkW)(X,X

k), �B(X) := (∇XkB)(X,X
k) we have the equations

�C(X) = 1
4Xk · �R(X)Xk, �B(X) = 1

4Xk · �W(X)Xk. (21)

Moreover, it holds that

�B(X) = �C(X)+ 1

8(n− 1)
(X · dS − dS ·X). (22)

The second Biancchi identity implies

g(�R(X)Y,Z) = g((∇Y Ric)Z − (∇Z Ric)Y,X). (23)

Inserting this into(21)we obtain

�C(X) = 1
4(X

k · (∇Xk Ric)X− (∇Xk Ric)X ·Xk). (24)

Using(21) and (24)we find the identities

Xk · �C(Xk) = 1
4 dS, Xk · �B(Xk) = 0. (25)

For any vector fieldX, the endomorphisms�C(X) and�B(X) of Σ are antiselfadjoint

�C(X)∗ = −�C(X), �B(X)∗ = −�B(X). (26)

Thus, the endomorphismsE := −�C(Xk) ◦ �C(Xk) andF := −�B(Xk) ◦ �B(Xk) are
selfadjoint and nonnegative

E∗ = E, E ≥ 0, F∗ = F, F ≥ 0. (27)

By (22) and (25), we obtain

E = F + 1

16(n− 1)
| dS|2. (28)

Moreover, by Proposition 3.1. in[5], it holds that

E = 1
4|∇Ric|2 − 1

16| dS|2 + 1
8[∇XjRic,∇XkRic](Xl) ·Xj ·Xk ·Xl, (29)
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where [·, ·] denotes the commutator of endomorphisms. Now we introduce some numbers
that occur in our following eigenvalue estimates. LetM be compact. We denote byν0 the
infimum of all eigenvalues ofH onM. By definition,ν0 is a conformal invariant and we
have the inequality

ν0|ψ|2 ≤ 〈Hψ,ψ〉 (30)

for anyψ ∈ Γ(Σ). By (19) we see that Ric andν0 are obstructions against the existence
of parallel spinors since∇ψ = 0 impliesC(X, Y) · ψ = 0 for all vector fieldsX, Y and,
hence,Gψ = 0. The Schrödinger–Lichnerowicz formula

∇∗∇ = D2 − 1
4S (31)

shows that, in the compact case with vanishing scalar curvature, any harmonic spinor
ψ(Dψ = 0) is parallel. Hence, ker(D) = 0 follows if M is compact and Ricci flat, but
ν0 > 0. In special situations,ν0 can easily be computed[3, Section 3]. Further, we consider
the number

µ := sup{‖B(X, Y)‖|x ∈ M,X, Y ∈ TxM, g(X, Y) = 0, |X| = |Y | = 1},
where‖ · ‖ denotes the operator norm. By definition,µ ≥ 0 is a conformal invariant. Byζ
we denote the corresponding supremum ifB is replaced by the spin curvature tensorC.

Lemma 2.2. For anyψ ∈ Γ(Σ), the inequalities

|〈C2(Xk,Xl) · ∇Xkψ,∇Xlψ〉| ≤ (n− 1)2ζ2|∇ψ|2, (32)

|〈B2(Xk,Xl) · ∇Xkψ,∇Xlψ〉| ≤ (n− 1)2µ2|∇ψ|2 (33)

are valid.

Proof. Let (X1, . . . , Xn) be any local orthonormal frame. Then, for allk, l ∈ {1, . . . , n},
we have the estimate

n∑
j=1

‖C(Xj,Xk)‖‖C(Xj,Xl)‖ ≤
{
(n− 1)ζ2 if k = l,

(n− 2)ζ2 if k �= l.
(∗)

Now it holds that

|〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉|
≤
∑
j,k,l

|C(Xj,Xk)∇Xkψ,C(Xj,Xl)∇Xlψ〉|

≤
∑
j,k,l

|C(Xj,Xk)∇Xkψ||C(Xj,Xl)∇Xlψ|

≤
∑
j,k,l

‖C(Xj,Xk)‖‖C(Xj,Xl)‖‖∇Xkψ||∇Xlψ|

=
∑
j,k

‖C(Xj,Xk)‖2|∇Xkψ|2 +
∑
j,k �=l

‖C(Xj,Xk)‖‖C(Xj,Xl)‖|∇Xkψ||∇Xlψ|
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(∗)≤(n− 1)ζ2|∇ψ|2 + (n− 2)ζ2
∑
k �=l

|∇Xkψ||∇Xlψ|

= ζ2|∇ψ|2 + (n− 2)ζ2
∑
k,l

|∇Xkψ||∇Xlψ|

= ζ2|∇ψ|2 + (n− 2)ζ2

(∑
k

|∇Xkψ|
)2

≤ ζ2|∇ψ|2 + n(n− 2)ζ2
∑
k

|∇Xkψ|2 = (n− 1)2ζ2|∇ψ|2.

This proves(32). An analogous calculation yields(33). �

We remark that(33) is a better estimate than the corresponding estimate (23) in[3].

3. Estimates depending on the Ricci tensor

LetM be a Riemannian spinn-manifold and

D : Γ(Σ) → Γ(TM ⊗Σ)

the corresponding twistor operator locally given byDψ := Xk ⊗DXkψ with

DXψ := ∇Xψ + 1

n
X ·Dψ.

Fors, t ∈ R, we consider the differential operators of first order (modified twistor operators)

Ps,Qt : Γ(Σ) → Γ(TM ⊗Σ)

defined byPsψ := Xk ⊗ PsXkψ,Qtψ := Xk ⊗QtXkψ and

PsXψ := DXψ − s

(
�C(X)+ 1

4n
X · dS

)
· ψ,

QtX := DXψ + t

(
Ric − S

n

)
(X) ·Dψ.

The image ofD is contained in the kernel of the Clifford multiplication, i.e.,

Xk ·DXkψ = 0 (34)

for all ψ ∈ Γ(Σ). Thus, by(10) and (25), we see that the images ofPs andQt are also
contained in the kernel of the Clifford multiplication

Xk · PsXkψ = 0, Xk ·QtXkψ = 0. (35)

For anyψ ∈ Γ(Σ), one has the well-known formula

|Dψ|2 = |∇ψ|2 − 1

n
|Dψ|2. (36)
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We introduce the selfadjoint nonnegative endomorphism

E := E − 1

16n
|dS|2(28)= F + 1

16n(n− 1)
|dS|2

and by straightforward calculations we obtain

|Psψ|2 = |Dψ|2 + 2sRe〈�C(Xk)∇Xkψ,ψ〉 + s

2n
Re〈Dψ,dS · ψ〉 + s2〈Eψ,ψ〉,

(37)

|Qtψ|2 = |Dψ|2 − 2tRe〈Ric(Xk)∇Xkψ,Dψ〉 + 2t
S

n
|Dψ|2 + t2

∣∣∣∣Ric − S

n

∣∣∣∣
2

|Dψ|2.
(38)

Lemma 3.1. Letλ be any eigenvalue of the Dirac operatorD. Then, for all corresponding
eigenspinorsψ(Dψ = λψ), it holds that

1

2
(|Ptψ|2 + |Qtψ|2)

= |Dψ|2 + t
S

n
λ2|ψ|2 − t

((
λ2 − S

4

)(
|∇ψ|2 −

(
λ2 − S

4

)
|ψ|2

)

+1

4
|Ric|2|ψ|2 + 〈∇Ric(Xk)ψ,∇Xkψ〉

)
+ t div(Xψ)

+ t2

2

(
〈Eψ,ψ〉 + λ2

∣∣∣∣Ric − S

n

∣∣∣∣
2

|ψ|2
)
, (39)

whereXψ is the vector field locally defined by

Xψ := Re(〈(D2 − 1
4S)ψ,∇Xkψ〉 + 〈∇XjDψ + 1

2Ric(Xj) · ψ,Xk · ∇Xjψ〉)Xk.

Proof. By Lemma 1.4 in[2] and(24), for all ψ ∈ Γ(S), we have the identity

Re〈Ric(Xk)∇XkDψ,ψ〉 − Re〈�C(Xk)∇Xkψ,ψ〉
= |∇Dψ|2 − |(D2 − 1

4S)ψ|2 − 1
4S|∇ψ|2 + 1

4|Ric|2|ψ|2
+ 〈∇Ric(Xk)ψ,∇Xkψ〉 − div(Xψ). (40)

Using(37), (38) and (40)we obtain(39). �

Now, for M being compact, letϑ denote the supremum of all eigenvalues ofE onΣ.
Thenϑ ≥ 0 and

〈Eψ,ψ〉 ≤ ϑ|ψ|2 (41)

for anyψ ∈ Γ(Σ). Moreover, letκ0 be the infimum of all eigenvalues of Ric onTM and let
κ denote the supremum of its eigenvalues. Then, for anyψ ∈ Γ(Σ), the inequalities
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κ0|∇ψ|2 ≤ 〈∇Ric(Xk)ψ,∇Xkψ〉 ≤ κ|∇ψ|2 (42)

are valid. We denote byS0 the minimum of the scalar curvatureS and byS1 its maximum
and we use the notation

S∗ :=
{
S0 if κ0 ≤ 0,

S1 if κ0 > 0.

Further, we introduce the functionsα, β : R → R defined by

α(t) := 1 + nt

n− 1

(
S1

n
− κ0 + S1 − S0

4

)
+ nt2

2(n− 1)

∣∣∣∣Ric − S

n

∣∣∣∣
2

1
,

β(t) := S0 + t

(
|Ric|20 − S∗κ0 + S0(S1 − S0)

4

)
− 2ϑt2,

where|Ric|0 denotes the minimum of the function|Ric| and|Ric − (S/n)|1 the maximum
of |Ric − (S/n)|.

Theorem 3.1. LetM be a compact Riemannian spinn-manifold and letλ be any eigenvalue
of the Dirac operatorD. Then, for all t ≥ 0, we have

λ2 ≥ n

4(n− 1)

β(t)

α(t)
. (43)

Proof. By Lemma 2.2in [5], the inequalities

−S1 − S0

4
(λ2 − S0

4
)

∫
M

|ψ|2 ≤
∫
M

(
λ2 − S

4

)(
|∇ψ|2 −

(
λ2 − S

4

)
|ψ|2

)

≤ S1 − S0

4

(
λ2 − S0

4

)∫
M

|ψ|2 (44)

are valid for any eigenspinorψ to the eigenvalueλ ofD. Using(31), (36), (41) and (44)we
obtain(43) if we integrateEq. (39). �

We obtain the following corollary by computing the maximum ofβ(t) for t ≥ 0.

Corollary 3.1. There are no harmonic spinors on a compact Riemannian spin manifold
with S0 ≤ 0 if the condition

|Ric|20 > S0

(
κ0 − S1 − S0

4

)
+
√

8|S0|ϑ (45)

is satisfied. In particular, the kernel ofD is trivial if S0 = 0 and|Ric|0 > 0.

Remark 3.1.

(i) Our Corollary 3.1is a generalization of Theorem 2.1 in[2] since, in the case of a
harmonic curvature tensor(�R = 0), we have dS = 0 andϑ = 0.
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(ii) The inequality(43)can be written in the form

λ2 ≥ n

4(n− 1)

(
S0 + t

γ(t)

α(t)

)
, (46)

whereγ(t) is the function given by

γ(t) := |Ric|20 − S0

n− 1

(
S1 − κ0 + S1 − S0

4

)
− κ0(S∗ − S0)

− 2t

(
nS0

4(n− 1)

∣∣∣∣Ric − S

n

∣∣∣∣
2

1
+ ϑ

)
.

Thus, forS0 > 0, (46) yields a better estimate than(1) if γ(t) > 0 for somet > 0. We
see immediately that this is the case if the condition

|Ric|20 >
S0

n− 1

(
S1 − κ0 + S1 − S0

4

)
+ κ0(S∗ − S0) (47)

is fulfilled. This generalizes a corresponding assertion in[2, Section 2]. In particular,
if S is constant and positive,(47)simplifies to

|Ric|20 >
S

n− 1
(S − κ0). (48)

(iii) The limiting case of(43) corresponds to the limiting case of(1) since, by the same
arguments that we used inSection 2of [2], it follows that(43) can be an equality for
the first eigenvalue ofD for t = 0 only.

In order to write down the main result of this section the notations:

A := |Ric|20 − S0

n− 1

(
S1 − κ0 + S1 − S0

4

)
− κ0(S∗ − S0),

b := n

n− 1

(
S1

n
− κ0 + S1 − S0

4

)
, c :=

∣∣∣∣Ric − S

n

∣∣∣∣
1

√
2n

n− 1
,

a := 4

A

(
nS0

4(n− 1)

∣∣∣∣Ric − S

n

∣∣∣∣
2

1
+ ϑ

)

are convenient. The functiontγ(t)/α(t) attains its maximum fort > 0 if the condition(47)
is satisfied, i.e., ifA > 0. By computing this maximum and assertion (iii) ofRemark 3.1,
we obtain the following result.

Corollary 3.2. LetM be a compact Riemannian spinn-manifold withA ≥ 0. Then, for
every eigenvalueλ of the Dirac operator, we have the inequality

λ2 ≥ n

4(n− 1)

(
S0 + A

a+ b+ √
a2 + 2ab+ c2

)
, (49)

which is never an equality ifA > 0.
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Corollary 3.3. If M is a compact Riemannian spinn-manifold such thatS0 = 0 and
|Ric|0 > 0, then every eigenvalueλ of the Dirac operator satisfies the estimate

λ2 >
n

4(n− 1)

|Ric|20
a+ b+ √

a2 + 2ab+ c2
(50)

with the constants

a = 4ϑ

|Ric|20
, b = n

n− 1

(
n+ 4

4n
S1 − κ0

)
, c =

∣∣∣∣Ric − S

n

∣∣∣∣
1

√
2n

n− 1
.

Remark 3.2.

(i) Our Corollary 3.2is comparable withTheorem 3.1. in [2], which uses the additional
assumption that�R = 0. But Corollary 3.2 is not a direct generalization of this
Theorem 3.1. Since the application ofCorollary 3.2to the case of a harmonic curvature
tensor yields a weaker result thanTheorem 3.1. In particular, applyingCorollary 3.3
to the special case of�R = 0, the estimate(50)may be written as

λ2 >
1

4

|Ric|20
|κ0| + |Ric|1

√
2(n− 1)/n

(51)

since�R = 0 impliesE = 0 and dS = 0 and, hence,ϑ = 0. Comparing(3) and (51)
we see that(51) is a weaker estimate than(3).

(ii) Corollary 4.1in [5] is a result similar toCorollary 3.3, it was obtained under the
additional assumption that the Ricci tensor commutes with its covariant derivatives of
first order([Ric,∇XRic] = 0).

(iii) Examples 4.1. and 4.2. in[5] yield simple examples of manifolds for which the lower
bounds in the estimates(49)or (50), respectively, can be computed easily.

4. Weyl tensor depending estimates

Our estimate(49)cannot be better than(1) if M is Einstein or if|Ric|0 = 0. In this section
we prove estimates that also work in such situations. Fors, t ∈ R, let

Rs,St : Γ(Σ) → Γ(TM ⊗Σ)

be the first-order differential operators locally defined byRsψ := Xk ⊗ RsXkψ,Stψ =
Xk ⊗ StXkψ with

RsXψ := DXψ − s�B(X)ψ, StXψ := DXψ − tB(X,Xk)∇Xkψ.

Then, for anyψ ∈ Γ(Σ), we have

|Rsψ|2 = |Dψ|2 + 2sRe〈�B(Xk)∇Xkψ,ψ〉 + s2〈Fψ,ψ〉, (52)

|Stψ|2 = |Dψ|2 − 2tRe〈�B(Xk)∇Xkψ,ψ〉 − t〈Hψ,ψ〉
+ 2t div (Re〈B(Xk,Xl)∇Xlψ,ψ〉Xk)+ t2〈B2(Xk,Xl)∇Xkψ,∇Xlψ〉 (53)
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and, hence,

1
2(|R2tψ|2 + |S2tψ|2)= |Dψ|2 − t〈Hψ,ψ〉 + 2t div(Re〈B(Xk,Xl)∇Xlψ,ψ〉Xk)

+ 2t2(〈Fψ,ψ〉 + 〈B2(Xk,Xl)∇Xkψ,∇Xlψ〉). (54)

Theorem 4.1. LetM be a compact Riemannian spinn-manifold with harmonic Weyl tensor
(�W = 0) and letλ be any eigenvalue of the Dirac operator. Then, for all t ≥ 0, the
inequality

λ2 ≥ n

4(n− 1)

(
S0 + 4ν0t − (n− 1)µ2S0t

2

1 + n(n− 1)µ2t2

)
(55)

is valid.

Proof. By (21), �W = 0 implies�B = 0. IntegratingEq. (53)for any eigenspinorψ(Dψ =
λψ) we find(55)by using�B = 0, (30), (31), (33) and (36). �

The following result is proved by computing the maximum of the right-hand side of(55)
for t ≥ 0.

Corollary 4.1. LetM be a compact Riemannian spinn-manifold with�W = 0 andµ > 0.
Then every eigenvalueλ of the Dirac operator satisfies the estimate

λ2 ≥ 1

8(n− 1)


(2n− 1)S0 +

√
S2

0 + n

n− 1

(
4ν0

µ

)2

 . (56)

For S0 ≤ 0, this lower bound is positive if

ν0 >
1
2(n− 1)|S0|µ. (57)

In particular, there are no harmonic spinors ifS0 = 0 andν0 > 0.

Every Einstein manifold fulfils the condition�W = 0. Thus, we obtain the following
corollary.

Corollary 4.2. The estimate(56) is valid on any compact Einstein spin manifold with
µ > 0.

Remark 4.1.

(i) Comparing(7) and (56)we see that(56) is the better estimate. Thus, ourCorollary 4.1
improvesTheorem 3.1in [3].

(ii) For S0 > 0, (56) yields a better estimate than(1) if ν0 > 0. By Corollary 4.2, this is
also the case if the manifold is Einstein or even Ricci flat.

Our next aim is to prove an estimate similar to(56) for manifolds whose Weyl tensor is
not harmonic. We denote byη the supremum of all eigenvalues of the endomorphismF
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onΣ. Thenη ≥ 0 and it holds that

〈Fψ,ψ〉 ≤ η|ψ|2 (58)

for all ψ ∈ Γ(Σ).

Theorem 4.2. LetM be any compact Riemannian spinn-manifold and letλ be any eigen-
value of the Dirac operator. Then, for all t ≥ 0, we have the inequality

λ2 ≥ n

4(n− 1)

(
S0 + 4ν0t − 2((n− 1)µ2S0 + 4η)t2

1 + 2n(n− 1)µ2t2

)
. (59)

Proof. Using(58)we integrateEq. (54)and find(59)by simple estimates as before.�

By computing the maximum of the right-hand side of(59) with respect tot ≥ 0, we
obtain the following result.

Corollary 4.3. If M is a compact Riemannian spinn-manifold withµ > 0, then, for every
eigenvalueλ of the Dirac operatorD, the estimate

λ2 ≥ 1

8(n− 1)


(2n− 1)S0 − 4η

(n− 1)µ2
+
√(

S0 + 4η

(n− 1)µ2

)2

+ 8n

n− 1

(
ν0

µ

)2



(60)

is valid. For S0 ≤ 0, this lower bound is positive and, hence, ker(D) = 0 if the condition

ν0 >

√
|S0|(2η+ 1

2(n− 1)2µ2|S0|) (61)

is fulfilled.

Corollary 4.4. For every eigenvalueλ of the Dirac operator on a compact Riemannian
spinn-manifold withS0 = 0 andν0 > 0, we have the estimate

λ2 ≥ n

4(n− 1)

ν2
0

η+
√
η2 +

(
n

2

)
µ2ν2

0

. (62)

In particular, there are no harmonic spinors.

Remark 4.2.

(i) For S0 > 0, (60)also yields a better estimate than(1) if ν0 > 0.
(ii) It is not known if there exist manifolds with the property that(56)or (60), respectively,

is an equality for the first eigenvalueλ1 of the Dirac operator.



K.-D. Kirchberg / Journal of Geometry and Physics 50 (2004) 205–222 217

5. Estimates depending on the whole curvature tensor

In order to obtain estimates for the first eigenvalue of the Dirac operator that depend
on the Ricci tensor and also on the Weyl tensor we consider, for allt ∈ R, the first-order
differential operator

T t : Γ(Σ) → Γ(TM ⊗Σ),

which is locally defined byT tψ := Xk ⊗ T t
Xk
ψ, and

T t
Xψ := DXψ − tC(X,Xk)∇Xkψ.

Then, for anyψ ∈ Γ(Σ), it holds that

|T tψ|2 = |Dψ|2 + t

n
Re〈Ric(Xk)∇Xkψ,Dψ〉 − 2tRe〈�C(Xk)∇Xkψ,ψ〉 − t〈Gψ,ψ〉

− 2t div(Re〈C(Xk,Xl)∇Xlψ,ψ〉Xk)+ t2〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉. (63)

Lemma 5.1. LetM be a Riemannian spinn-manifold and letλ be any eigenvalue of the
Dirac operatorD. Then, for any corresponding eigenspinorψ(Dψ = λψ) and all t ∈ R,
we have the equations

|T tψ|2 = |Dψ|2 − t
2n− 1

n
Re〈�C(Xk)∇Xkψ,ψ〉

+ t

n

((
λ2 − S

4

)(
|∇ψ|2 −

(
λ2 − S

4

)
|ψ|2

)
+ 〈∇Ric(Xk)ψ,∇Xkψ〉

)

− t

(
〈Hψ,ψ〉 + 1

4n

(
n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

+ S2

n(n− 1)

)
|ψ|2

)

+ div
( t
n
Xψ + 2tRe〈C(Xk,Xl)∇Xlψ,ψ〉Xk

)
+ t2〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉, (64)

1

2
(|P((2n−1)/n)tψ|2 + |T 2tψ|2)

= |Dψ|2 + t

n

((
λ2 − S

4

)(
|∇ψ|2 −

(
λ2 − S

4

)
|ψ|2

)
+ 〈∇Ric(Xk)ψ,∇Xkψ〉

)

− t

(
〈Hψ,ψ〉 + 1

4n

(
n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

+ S2

n(n− 1)

)
|ψ|2

)

− div
( t
n
Xψ + 2tRe〈C(Xk,Xl)∇Xlψ,ψ〉Xk

)

+ 2t2
(

〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉 +
(

2n− 1

2n

)2

〈Eψ,ψ〉
)
. (65)
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Proof. Inserting (19) and (40)into (63) we find (64). Using (37) and (64)we obtain
(65). �

Again, letM be compact. By|S|0 we denote the minimum of the function|S| onM and
we use the notation

S� :=
{
S0 if κ ≥ 0,

S1 if κ < 0.

Moreover, we introduce six functionsαp, βp, γp : R → R, p ∈ {1,2}, defined by

αp(t) := 1 + 1

n− 1

(
κ + S1 − S0

4

)
+ pn(n− 1)ζ2t2,

βp(t) := S0 + t

(
4ν0 + 1

n

(
n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ |S|20
n(n− 1)

+ S0(S1 − S0)

4
+ S�κ

))

+ pt2
(
(n− 1)2S0ζ

2 −
(

2n− 1

n

)2

ϑ

)
,

γp(t) := 4ν0 + 1

n

(
n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ |S|20
n(n− 1)

− S0

n− 1

(
κ + S1 − S0

4

)
+ κ(S� − S0)

)

− pt

(
(n− 1)S0ζ

2 +
(

2n− 1

n

)2

ϑ

)
.

Theorem 5.1. Let λ be any eigenvalue of the Dirac operator on a compact Riemannian
spinn-manifold. Then the following holds:

(i) For anyt ≥ 0 with β2(t) > 0, we have the estimate

λ2 ≥ n

4(n− 1)

β2(t)

α2(t)
= n

4(n− 1)

(
S0 + t

γ2(t)

α2(t)

)
. (66)

(ii) If the curvature tensor is harmonic, then the estimate

λ2 ≥ n

4(n− 1)

β1(t)

α1(t)
= n

4(n− 1)

(
S + t

γ1(t)

α1(t)

)
(67)

is valid for everyt ≥ 0 with β1(t) > 0.

Proof. IntegratingEq. (65)and using(33), (41) and (42), for anyt ≥ 0, we obtain

λ2α2(t) ≥ n

4(n− 1)
β2(t) = n

4(n− 1)
(S0α2(t)+ γ2(t)). (68)

In particular,(68) shows thatβ2(t) > 0 (t ≥ 0) forcesα2(t) > 0. This proves the asser-
tion (i) of our theorem. Further, the supposition�R = 0 implies �C = 0 by (21) and,
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moreover,ϑ = 0, S0 = S1 = S. Thus, integratingEq. (64)one analogously proves the
assertion (ii). �

Corollary 5.1. On a compact Riemannian spinn-manifold withS0 ≤ 0, we have the
following:

(i) There are no harmonic spinors if the condition

4nν0 +n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ |S|20
n(n− 1)

+ S�κ >
|S0|(S1 − S0)

4

+ 4 ·

√√√√√2|S0|

( n

2

)2

|S0|ζ2 +
(

2n− 1

2

)2

ϑ


 (69)

is satisfied. In particular, for S0 = 0, there are no harmonic spinors ifν0 > 0 or
|Ric − (S/n)|0 > 0.

(ii) If the curvature tensor is harmonic, then there exist no harmonic spinors if

4nν0 + n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ S2

n(n− 1)
> |S|

(
κ + 4

(
n

2

)
ζ

)
. (70)

In particular, for S = 0, we haveker(D) = 0 if ν0 > 0 or |Ric|0 > 0.

Proof. (69) implies that the functionβ2(t) attains positive values for somet > 0. The
condition(70) implies that also the functionβ1(t) has this property. �

Remark 5.1.

(i) If the condition

4nν0 + n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ |S|20
n(n− 1)

>
S0

n− 1

(
κ + S1 − S0

4

)
(71)

is satisfied on a compact Riemannian spinn-manifold withS0 > 0, then(66) yields
a better estimate than(1) since this condition implies that the functionγ2(t) attains
positive values for somet > 0. We note thatS0 > 0 implies κ > 0 and, hence,
α2(t) ≥ 1 for t ≥ 0.

(ii) In the case of a harmonic curvature tensor, the functionγ1(t) reaches positive values
for somet > 0 if

4nν0 + n+ 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
>

S

n− 1

(
κ − S

n

)
. (72)

Thus, ifS > 0 and(72) is fulfilled, (67)yields a better estimate than(1).
(iii) The assertion (ii) ofCorollary 5.1is an improvement of Theorem 4.1 in[3], where,

instead ofζ, another curvature invariantσ was used.ζ andσ are related by

ζ ≤ 1

2

(
n

2

)
σ (73)
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(see[3, Section 4]). Replacingζ by the value

1

2

(
n

2

)
σ

inequality(70)becomes a condition that is weaker than the condition(38) in [3].

In the end of this paper we show that another combination of our basic Weitzenböck
formulas leads to similar results, but they do not contain the curvature invariantsκ0 andκ.
Using(37), (38) and (63)we find the equation

1

2
(|Qt/nψ|2 + |T 2tψ|2)

= |Dψ|2 + t
S

n
|Dψ|2 − t〈Gψ,ψ〉 − 2tRe〈�C(Xk)∇Xkψ,ψ〉

− 2t div(Re〈C(Xk,Xl)∇Xlψ,ψ〉Xk)

+ 2t2
(

1

4n2

∣∣∣∣Ric − S

n

∣∣∣∣
2

|Dψ|2 + 〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉
)

(74)

and, moreover,

1

3
(|P3tψ|2 + |Q3t/2nψ|2 + |T3tψ|2)

= |Dψ|2 − t〈Gψ,ψ〉 + t
S

n2
|Dψ|2 + t

2n
Re〈Dψ,dS · ψ〉

− 2t div(Re〈C(Xk,Xl)∇Xlψ,ψ〉Xk)

+ 3t2
(

〈Eψ,ψ〉 + 1

4n2

∣∣∣∣Ric − S

n

∣∣∣∣
2

|Dψ|2 + 〈C2(Xk,Xl)∇Xkψ,∇Xlψ〉
)
. (75)

Both equations are valid for anyt ∈ R and anyψ ∈ Γ(Σ). We introduce the six functions
αp, βp, γp : R → R, p ∈ {3,4}, defined by

αp(t) := 1 + t
S1

n(n− 1)
+ (p− 1)t2

(
1

4n(n− 1)

∣∣∣∣Ric − S

n

∣∣∣∣
2

1
+ n(n− 1)ζ2

)
,

βp(t) := S0 + t

(
4ν0+ 2

n−2

∣∣∣∣Ric−S

n

∣∣∣∣
2

0
+ |S|20
n(n−1)

)
+ (p−1)t2((n− 1)2S0ζ

2 − 4ϑ),

γp(t) := 4ν0 + 2

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
− S0

n(n− 1)
(S1 − S0)

− (p− 1)tS0

(
1

4n(n− 1)

∣∣∣∣Ric − S

n

∣∣∣∣
2

1
+ (n− 1)ζ2 + 4ϑ

)
.

Theorem 5.2. Let λ be any eigenvalue of the Dirac operator on a compact Riemannian
spinn-manifold.Then the following holds:
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(i) For everyt ≥ 0 with β4(t) > 0, we have the estimate

λ2 ≥ n

4(n− 1)

β4(t)

α4(t)
= n

4(n− 1)

(
S0 + t

γ4(t)

α4(t)

)
. (76)

(ii) In the special case that�R = 0, the estimate

λ2 ≥ n

4(n− 1)

β3(t)

α3(t)
= n

4(n− 1)

(
S + t

γ3(t)

α3(t)

)
(77)

is valid for everyt ≥ 0 with β3(t) > 0.

Proof. Inserting any eigenspinorψ to the eigenvalueλ of D into Eq. (75)and then inte-
grating this equation we obtain(76)by (19), (32) and (41)and analogous considerations as
in the proof ofTheorem 5.1. In the special case of�R = 0, we integrateequation (74)for
any eigenspinorψ. Then we find(77). �

Studying the conditions under which the functionsβ3(t) andβ4(t), respectively, attain
positive values for somet > 0, we immediately obtain the next result.

Corollary 5.2. The following holds on a compact Riemannian spinn-manifold withS0 ≤ 0:

(i) There are no harmonic spinors if

4nν0+ 2n

n− 2

∣∣∣∣Ric− S

n

∣∣∣∣
2

0
+ |S|20
n− 1

>4 ·
√√√√3|S0|

((
n

2

)2

|S0|ζ2 + n2ϑ

)
. (78)

In particular, for S0 = 0, we haveker(D) = 0 if ν0 > 0 or |Ric − (S/n)|0 > 0.
(ii) In the special situation that�R = 0, there are no harmonic spinors if

4nν0 + 2n

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
+ S2

n− 1
> 4

(
n

2

)
ζ|S|

√
2. (79)

Remark 5.2.

(i) For S0 > 0, (76)gives a better estimate than(1) if

4nν0 + 2n

n− 2

∣∣∣∣Ric − S

n

∣∣∣∣
2

0
>

S0

n− 1
(S1 − S0). (80)

(ii) In the special case of a harmonic curvature tensor andS > 0, (77) yields a better
estimate than(1) if ν0 > 0 or |Ric − (S/n)|0 > 0.

(iii) The same arguments that are used in the proof ofTheorem 4.2in [3] show that, for
an optimal parametert0 > 0, the inequalities(66), (67) and(76), (77) can never be
equalities for the first eigenvalue of the Dirac operator.

(iv) If the first-order covariant derivatives of the Ricci tensor commute([∇XRic,∇YRic] =
0), we see, by(29), that the numberϑ, which enters the estimates(43), (66) and (76), is
simply the maximum of the function(1/4)|∇Ric|2−((n+1)/16n)|dS|2. Moreover, in
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this case it becomes obvious, owing to(28)that the numberη, which occurs inSection
4, is given by the maximum of the function(1/4)|∇Ric|2 − (n/16(n− 1))|dS|2 then.
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